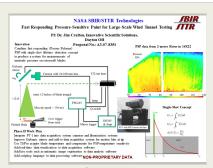
# Fast Responding Pressure-Sensitive Paint for Large-Scale Wind Tunnel Testing, Phase II




Completed Technology Project (2014 - 2017)

#### **Project Introduction**

The proposed work focuses on implementing fast-response pressure-sensitive paint for measurements of unsteady pressure in rotorcraft applications. Significant rotorcraft problems such as dynamic stall, rotor blade loads in forward flight, and blade-vortex interaction all have significant unsteady pressure oscillations that must be resolved in order to understand the underlying physics. Installation of pressure transducers is difficult and expensive on rotorcraft models, and the resulting data has limited spatial resolution. Application of a fast-responding pressure-sensitive paint should provide unsteady surface pressure distributed over the blade surface. Fast PSP measurements have been demonstrated at NASA Langley on a 2-meter rotor model in hover and in forward flight by the ISSI/OSU team using two single camera systems. More recently, measurements were conducted in forward flight using multiple cameras and lasers at two azimuthal positions. We propose expanding this system for production testing. During Phase I, a lens controller + pan/tilt stages with Ethernet control and presets was developed. This device will be used to control the field of view of the system remotely. Mitigation of motion blur at the tip was demonstrated using a galvanic mirror. A temperature measurement capability using TSP was added to the system to allow temperature corrections to be applied to the PSP data. Fast efficient data processing software that included automatic image registration and scripting of repetitive operations was investigated to speed up data processing. These new tools and software will be integrated into the data acquisition package and data processing package to improve accuracy and productivity during testing.

#### **Primary U.S. Work Locations and Key Partners**





Fast Responding Pressure-Sensitive Paint for Large-Scale Wind Tunnel Testing, Phase II

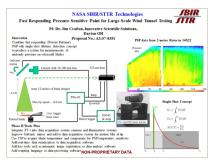
#### **Table of Contents**

| Project Introduction          | 1 |
|-------------------------------|---|
| Primary U.S. Work Locations   |   |
| and Key Partners              | 1 |
| Images                        | 2 |
| Organizational Responsibility | 2 |
| Project Management            | 2 |
| Technology Maturity (TRL)     | 3 |
| Technology Areas              | 3 |
| Target Destinations           | 3 |



#### Small Business Innovation Research/Small Business Tech Transfer

# Fast Responding Pressure-Sensitive Paint for Large-Scale Wind Tunnel Testing, Phase II




Completed Technology Project (2014 - 2017)

| Organizations<br>Performing Work      | Role                       | Туре           | Location             |
|---------------------------------------|----------------------------|----------------|----------------------|
| Innovative Scientific Solutions, Inc. | Lead<br>Organization       | Industry       | Dayton,<br>Ohio      |
| Langley Research<br>Center(LaRC)      | Supporting<br>Organization | NASA<br>Center | Hampton,<br>Virginia |

| Primary U.S. Work Locations |          |
|-----------------------------|----------|
| Ohio                        | Virginia |

#### **Images**



#### **Briefing Chart Image**

Fast Responding Pressure-Sensitive Paint for Large-Scale Wind Tunnel Testing, Phase II (https://techport.nasa.gov/imag e/135713)

## Organizational Responsibility

# Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

#### **Lead Organization:**

Innovative Scientific Solutions, Inc.

#### **Responsible Program:**

Small Business Innovation Research/Small Business Tech Transfer

### **Project Management**

#### **Program Director:**

Jason L Kessler

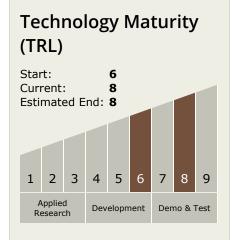
#### **Program Manager:**

Carlos Torrez

#### **Principal Investigator:**

Jim Crafton

#### **Co-Investigator:**


James Crafton



# Fast Responding Pressure-Sensitive Paint for Large-Scale Wind Tunnel Testing, Phase II



Completed Technology Project (2014 - 2017)



### **Technology Areas**

#### **Primary:**

- TX08 Sensors and Instruments
  - ☐ TX08.1 Remote Sensing Instruments/Sensors
    - └─ TX08.1.3 Optical Components

### **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

